On symmetric solutions of a singular elliptic equation with critical Sobolev–Hardy exponent
نویسندگان
چکیده
منابع مشابه
Four solutions of an inhomogeneous elliptic equation with critical exponent and singular term
In this paper, we prove the existence of four nontrivial solutions of −∆u− λ |x|2 u = |u|2−2u+ μ|x|α−2u+ f(x), x ∈ Ω\{0} and show that at least one of them is sign changing. Our results extend some previous works on the literature, as Tarantello(1993), Kang-Deng(2005) and HiranoShioji(2005).
متن کاملMultiplicity of solutions for a fourth order elliptic equation with critical exponent on compact manifolds
This work deals with a perturbation of the so called prescribed scalar Q-curvature type equations on compact Riemannian manifolds; these equations are fourth order elliptic and of critical Sobolev growth. Sufficient conditions are given for having at least two distinct solutions. c © 2006 Elsevier Ltd. All rights reserved.
متن کاملOn Delaunay Solutions of a Biharmonic Elliptic Equation with Critical Exponent
We are interested in the qualitative properties of positive entire solutions u ∈ C(R\{0}) of the equation (0.1) ∆u = u n+4 n−4 in R\{0} and 0 is a non-removable singularity of u(x). It is known from [Theorem 4.2, [12]] that any positive entire solution u of (0.1) is radially symmetric with respect to x = 0, i.e. u(x) = u(|x|), and equation (0.1) also admits a special positive entire solution us...
متن کاملExistence of Multiple Solutions for a Singular Elliptic Problem with Critical Sobolev Exponent
and Applied Analysis 3 The following Hardy-Sobolev inequality is due to Caffarelli et al. 12 , which is called Caffarelli-Kohn-Nirenberg inequality. There exist constants S1, S2 > 0 such that (∫ RN |x|−bp |u|pdx )p/p∗ ≤ S1 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.8 ∫ RN |x|− a 1 |u|dx ≤ S2 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.9 where p∗ Np/ N − pd is called the Sobolev critical exponent. ...
متن کاملSolutions of an Elliptic System with a Nearly Critical Exponent
This problem has positive solutions for ǫ > 0 (with pqǫ > 1) and no non-trivial solution for ǫ ≤ 0. We study the asymptotic behaviour of least energy solutions as ǫ → 0. These solutions are shown to blow-up at exactly one point, and the location of this point is characterized. In addition, the shape and exact rates for blowing up are given. Résumé. Considéré le problème −∆uǫ = v p ǫ vǫ > 0 en Ω...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2007
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2006.06.070